XAFS Study on Chlorination of Y₂O₃ in LiCl-KCl-ZrCl₄ Melt

Yoshihiro Okamoto^a, Tsuyoshi Yaita^a, Hideaki Shiwaku^a, and Shinichi Suzuki^b

^a Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kouto 1-1-1, Sayo-cho, Hyogo 679-5148, Japan

b Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Tokai-mura, Ibaraki 319-1195, Japan

Reprint requests to Y. O.; E-mail: okamoto@molten.tokai.jaeri.go.jp

Z. Naturforsch. **63a**, 735 – 738 (2008); received April 24, 2008

The chlorination reaction of Y_2O_3 with $ZrCl_4$ in LiCl-KCl eutectic melt was investigated by X-ray absorption fine structure (XAFS) technique. The chlorination reaction was observed between 773 K and 823 K as the 1st peak shift of the Fourier transform magnitude function $|FT(k^3\chi(k))|$. The peak corresponding to the nearest Y^{3+} -Cl⁻ correlation was observed in the XAFS analysis at 823 K as the result of the chlorination. It was confirmed that the mixture melts after the reaction is almost equivalent to a molten 5% YCl₃-(LiCl-KCl eutectic) mixture.

Key words: XAFS; Molten Salt; Chlorination; Nuclear Fuel Cycle.